O método das diferenças finitas (MDF) é um método de resolução de equações diferenciais que se baseia na aproximação de derivadas por diferenças finitas. A fórmula de aproximação obtém-se da série de Taylor da função derivada. Hoje, os MDFs são a abordagem dominante das soluções numéricas de equações diferenciais parciais.
O operador de diferenças finitas para derivada pode ser obtido a partir da série de Taylor para as seguintes funções:
Portanto, a derivada primeira pode ser escrita de três formas distintas como uma diferença-quociente mais um termo de erro, obtido ao desprezar-se termos de ordem superior :
- , que é conhecida como fórmula das diferenças progressivas, ou
- , que é conhecida como fórmula das diferenças regressivas, ou ainda
- , que é conhecida como fórmula das diferenças centradas.
- Além disso, é possível obter derivadas de ordem superior. A derivada de segunda ordem é obtida a partir de
e é dada por